class: center, middle, inverse, title-slide # A Data-Driven Approach At Characterizing Heterogeneity In Neuropathy Assessments ### Luke Johnston --- layout: true <div class="footer"> <img src="../../common/au_logo_black.png" alt="Aarhus University", width="160"> https://gitlab.com/lwjohnst/neuropathy.clusters </div> --- ## PURPOSE: Get feedback, comments on two issues: - Analysis implementation - Extracting key results --- class: middle, center # BACKGROUND --- ## Diabetic neuropathy: Major complication without strong definition -- - Many assessments: - DN4, UENS, TCSS, mTCSS, Monofilament-based, MNSI, Heart rate variability, Sural nerve conduction -- - No consensus on assessing neuropathy --- ## Study objectives - Are there specific groups of people who share similar assessment responses? -- - Are some assessment tools better at capturing features of neuropathy? -- - Based on above, could we simplify what assessment items to give and use the responses? --- ## Study and measurements - Cohort: ~13 year followup of ADDITION-DK (n=526) - Measures: 8 different neuropathy assessment tools (105 total items) --- ## Rationale on statistical analysis <table class="table table-striped table-condensed" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:right;"> ID </th> <th style="text-align:left;"> A1 </th> <th style="text-align:left;"> A2 </th> <th style="text-align:left;"> A3 </th> <th style="text-align:left;"> A4 </th> <th style="text-align:left;"> A5 </th> <th style="text-align:left;"> A6 </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;font-weight: bold;"> 1 </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> absent </td> </tr> <tr> <td style="text-align:right;font-weight: bold;"> 2 </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;"> 3 </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;"> 4 </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> absent </td> </tr> <tr> <td style="text-align:right;font-weight: bold;"> 5 </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> absent </td> </tr> <tr> <td style="text-align:right;font-weight: bold;"> 6 </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;"> 7 </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;"> 8 </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> present </td> <td style="text-align:left;"> absent </td> <td style="text-align:left;"> absent </td> </tr> </tbody> </table> --- ## Groups by row: Hierarchical cluster (HCA) <table class="table table-striped table-condensed" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:right;"> ID </th> <th style="text-align:left;"> A1 </th> <th style="text-align:left;"> A2 </th> <th style="text-align:left;"> A3 </th> <th style="text-align:left;"> A4 </th> <th style="text-align:left;"> A5 </th> <th style="text-align:left;"> A6 </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;font-weight: bold;background-color: lightblue !important;"> 1 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> </tr> <tr> <td style="text-align:right;font-weight: bold;background-color: lightblue !important;"> 2 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;background-color: lightblue !important;"> 3 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;background-color: lightblue !important;"> 4 </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> </tr> <tr> <td style="text-align:right;font-weight: bold;background-color: lightblue !important;"> 5 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> </tr> <tr> <td style="text-align:right;font-weight: bold;background-color: lightblue !important;"> 6 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;background-color: lightgreen !important;"> 7 </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;background-color: lightgreen !important;"> 8 </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> </tr> </tbody> </table> --- ## "Groups" by variable: Factor analysis <table class="table table-striped table-condensed" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:right;"> ID </th> <th style="text-align:left;"> A1 </th> <th style="text-align:left;"> A2 </th> <th style="text-align:left;"> A3 </th> <th style="text-align:left;"> A4 </th> <th style="text-align:left;"> A5 </th> <th style="text-align:left;"> A6 </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;font-weight: bold;"> 1 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> </tr> <tr> <td style="text-align:right;font-weight: bold;"> 2 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;"> 3 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;"> 4 </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> </tr> <tr> <td style="text-align:right;font-weight: bold;"> 5 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> </tr> <tr> <td style="text-align:right;font-weight: bold;"> 6 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;"> 7 </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;"> 8 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> </tr> </tbody> </table> --- class: middle, center # FIRST ISSUE: ### Both methods data-specific, with fixed groups. ### What is *likelihood* individual will be in group? --- class: middle, center # My idea for implementation: ### Run methods on resampled sets (4-fold CV, x 25) --- <table class="table table-striped table-condensed" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:right;"> ID </th> <th style="text-align:left;"> A1 </th> <th style="text-align:left;"> A2 </th> <th style="text-align:left;"> A3 </th> <th style="text-align:left;"> A4 </th> <th style="text-align:left;"> A5 </th> <th style="text-align:left;"> A6 </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;font-weight: bold;background-color: lightblue !important;"> 1 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> </tr> <tr> <td style="text-align:right;font-weight: bold;background-color: lightblue !important;"> 3 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;background-color: lightblue !important;"> 6 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;background-color: lightgreen !important;"> 7 </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> </tr> </tbody> </table> -- <table class="table table-striped table-condensed" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:right;"> ID </th> <th style="text-align:left;"> A1 </th> <th style="text-align:left;"> A2 </th> <th style="text-align:left;"> A3 </th> <th style="text-align:left;"> A4 </th> <th style="text-align:left;"> A5 </th> <th style="text-align:left;"> A6 </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;font-weight: bold;background-color: lightblue !important;"> 2 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;background-color: lightblue !important;"> 5 </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> present </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> <td style="text-align:left;background-color: lightblue !important;"> absent </td> </tr> <tr> <td style="text-align:right;font-weight: bold;background-color: lightgreen !important;"> 7 </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> </tr> <tr> <td style="text-align:right;font-weight: bold;background-color: lightgreen !important;"> 8 </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> present </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> <td style="text-align:left;background-color: lightgreen !important;"> absent </td> </tr> </tbody> </table> --- ## HCA results: Likelihood of group membership <img src="" width="80%" style="display: block; margin: auto;" /> .footnote[Focusing on HCA for time.] --- class: middle, center # SECOND ISSUE: ### What are common responses by group? --- ### This is 50 rows of what results look like: <div style="border: 1px solid #ddd; padding: 0px; overflow-y: scroll; height:350px; "><table class="table table-striped table-condensed" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> ClusterNumber </th> <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> Questionnaire </th> <th style="text-align:left;position: sticky; top:0; background-color: #FFFFFF;"> AssessmentResponse </th> <th style="text-align:right;position: sticky; top:0; background-color: #FFFFFF;"> MeanPercent </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> MNSI </td> <td style="text-align:left;"> Ankle reflex: Present with reinforcement </td> <td style="text-align:right;"> 0.8977778 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> TCSS </td> <td style="text-align:left;"> Ankle reflex: Decreased(present by reinforcement) </td> <td style="text-align:right;"> 0.8977778 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> HRV </td> <td style="text-align:left;"> E:i (expiration inspiration): High </td> <td style="text-align:right;"> 0.8107937 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> mTCSS </td> <td style="text-align:left;"> Tingling?: No </td> <td style="text-align:right;"> 0.7972152 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> UENS </td> <td style="text-align:left;"> Neurotip section 1: Normal </td> <td style="text-align:right;"> 0.7894309 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> MNSI </td> <td style="text-align:left;"> Do you ever have any burning pain in your legs and/or feet?: No </td> <td style="text-align:right;"> 0.7872358 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> TCSS </td> <td style="text-align:left;"> Ataxia?: No </td> <td style="text-align:right;"> 0.7855172 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> MNSI </td> <td style="text-align:left;"> Do your legs hurt when you walk?: No </td> <td style="text-align:right;"> 0.7803376 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> MNSI </td> <td style="text-align:left;"> Ulceration foot?: Absent </td> <td style="text-align:right;"> 0.7726740 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> MNSI </td> <td style="text-align:left;"> Ulceration foot?: Absent </td> <td style="text-align:right;"> 0.7726740 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> mTCSS </td> <td style="text-align:left;"> Position sensation: Normal </td> <td style="text-align:right;"> 0.7721547 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> UENS </td> <td style="text-align:left;"> Neurotip section 4: Decreased </td> <td style="text-align:right;"> 0.7600000 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> UENS </td> <td style="text-align:left;"> Neurotip section 2: Decreased </td> <td style="text-align:right;"> 0.7569231 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> TCSS </td> <td style="text-align:left;"> Temperature for foot: Abnormal </td> <td style="text-align:right;"> 0.7544304 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> TCSS </td> <td style="text-align:left;"> Upper limb symptoms?: Yes </td> <td style="text-align:right;"> 0.7446667 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> DPN </td> <td style="text-align:left;"> Amplitude: Low-mid </td> <td style="text-align:right;"> 0.7406803 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> DN4 </td> <td style="text-align:left;"> Pain in area may reveal hypoesthesia to touch?: No </td> <td style="text-align:right;"> 0.6948315 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> UENS </td> <td style="text-align:left;"> Vibration on great toe: Decreased </td> <td style="text-align:right;"> 0.6471795 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> MNSI </td> <td style="text-align:left;"> Have you ever had an open sore on your foot?: Yes </td> <td style="text-align:right;"> 0.4088889 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> DN4 </td> <td style="text-align:left;"> Do you suffer from pain in your feet?: Yes </td> <td style="text-align:right;"> 0.2711111 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 1 </td> <td style="text-align:left;"> DN4 </td> <td style="text-align:left;"> Pain feels like painful cold?: No </td> <td style="text-align:right;"> 0.2320000 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> mTCSS </td> <td style="text-align:left;"> Foot pain?: Yes </td> <td style="text-align:right;"> 0.5133333 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> DN4 </td> <td style="text-align:left;"> Pain feels like electric shocks?: Yes </td> <td style="text-align:right;"> 0.5093333 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> TCSS </td> <td style="text-align:left;"> Knee reflex: Decreased(present by reinforcement) </td> <td style="text-align:right;"> 0.4174359 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> TCSS </td> <td style="text-align:left;"> Ataxia?: Yes </td> <td style="text-align:right;"> 0.4150000 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> MNSI </td> <td style="text-align:left;"> Do you ever have any burning pain in your legs and/or feet?: Yes </td> <td style="text-align:right;"> 0.3059259 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> DN4 </td> <td style="text-align:left;"> Pain caused or increased by brushing?: No </td> <td style="text-align:right;"> 0.2794203 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> DPN </td> <td style="text-align:left;"> Velocity: Low-mid </td> <td style="text-align:right;"> 0.2385185 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> MNSI </td> <td style="text-align:left;"> Do your legs hurt when you walk?: Yes </td> <td style="text-align:right;"> 0.2350000 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> Monofilament </td> <td style="text-align:left;"> Light touch under foot, point 4: Abnormal(≤1/3) </td> <td style="text-align:right;"> 0.2112821 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> Monofilament </td> <td style="text-align:left;"> Light touch under foot, point 1: Normal(≥ 2/3) </td> <td style="text-align:right;"> 0.2088623 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> MNSI </td> <td style="text-align:left;"> Monofilament great toe: Normal(8-10) </td> <td style="text-align:right;"> 0.2086842 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> UENS </td> <td style="text-align:left;"> Neurotip section 5: Normal </td> <td style="text-align:right;"> 0.2084291 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> MNSI </td> <td style="text-align:left;"> Do you ever have any burning pain in your legs and/or feet?: No </td> <td style="text-align:right;"> 0.2000000 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> UENS </td> <td style="text-align:left;"> Extension great toe: Normal </td> <td style="text-align:right;"> 0.1996101 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> UENS </td> <td style="text-align:left;"> Neurotip section 3: Decreased </td> <td style="text-align:right;"> 0.1966667 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 2 </td> <td style="text-align:left;"> UENS </td> <td style="text-align:left;"> Neurotip section 1: Absent </td> <td style="text-align:right;"> 0.0333333 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 3 </td> <td style="text-align:left;"> MNSI </td> <td style="text-align:left;"> Has your doctor ever told you that you have diabetic neuropathy?: Yes </td> <td style="text-align:right;"> 0.2966667 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 3 </td> <td style="text-align:left;"> Monofilament </td> <td style="text-align:left;"> Light touch under foot, point 1: Abnormal(≤1/3) </td> <td style="text-align:right;"> 0.2555556 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 3 </td> <td style="text-align:left;"> DN4 </td> <td style="text-align:left;"> Pain feels like electric shocks?: No </td> <td style="text-align:right;"> 0.1720000 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 3 </td> <td style="text-align:left;"> Monofilament </td> <td style="text-align:left;"> Light touch under foot, point 3: Abnormal(≤1/3) </td> <td style="text-align:right;"> 0.1293333 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 3 </td> <td style="text-align:left;"> HRV </td> <td style="text-align:left;"> Root mean square of successive differences for hr: Mid-high </td> <td style="text-align:right;"> 0.0720000 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 3 </td> <td style="text-align:left;"> mTCSS </td> <td style="text-align:left;"> Upper limb symptoms?: No </td> <td style="text-align:right;"> 0.0525490 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 3 </td> <td style="text-align:left;"> HRV </td> <td style="text-align:left;"> High frequency (?): Low </td> <td style="text-align:right;"> 0.0512000 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 3 </td> <td style="text-align:left;"> TCSS </td> <td style="text-align:left;"> Ataxia?: No </td> <td style="text-align:right;"> 0.0482270 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 3 </td> <td style="text-align:left;"> TCSS </td> <td style="text-align:left;"> Ankle reflex: Normal </td> <td style="text-align:right;"> 0.0477778 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 3 </td> <td style="text-align:left;"> UENS </td> <td style="text-align:left;"> Extension great toe: Normal </td> <td style="text-align:right;"> 0.0475789 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 3 </td> <td style="text-align:left;"> Monofilament </td> <td style="text-align:left;"> Light touch under foot, point 1: Normal(≥ 2/3) </td> <td style="text-align:right;"> 0.0400000 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 3 </td> <td style="text-align:left;"> MNSI </td> <td style="text-align:left;"> Vibration perception at great toe: Decreased </td> <td style="text-align:right;"> 0.0346667 </td> </tr> <tr> <td style="text-align:left;"> Cluster: 3 </td> <td style="text-align:left;"> mTCSS </td> <td style="text-align:left;"> Tingling?: No </td> <td style="text-align:right;"> 0.0315447 </td> </tr> </tbody> </table></div> --- class: middle, center ## How to make sense of this data? ## How to extract meaning?